Flower Morphology Influences Pollinator Community with Implications for Cross-Pollination: Observations in Rabbiteye Blueberry (Vaccinium ashei Reade)

Shelley R. Rogers, David R. Tarpy, and Hannah J. Burrack
Department of Entomology, North Carolina State University

Abstract
The narrow, long corolla of rabbiteye blueberries (Vaccinium ashei) can be challenging to foraging pollinators, particularly honey bees (Apis mellifera), and variations in this floral morphology appear to alter the species composition of the visiting bee community. The rabbiteye variety ‘Premier’ exhibits abnormal flower morphology, with shortened and split corollas, and appeared to be visited by a different community of bee pollinators than nearby, simultaneously flowering varieties. We conducted observations to compare bee visitation rates at ‘Premier’ flowers to other common rabbiteye varieties (‘Powderblue’ and ‘Brightwell’) that have more typical flowers. Timed observations were conducted during 2009 and 2010, and significantly more A. mellifera and significantly fewer wild bees visited ‘Premier’ flowers when compared to other rabbiteye cultivars. This apparent resource partitioning may reduce cross-pollination, which is important for successful rabbiteye blueberry production but may also increase A. mellifera visitation. A similar visitation rate increase by A. mellifera in blueberries has been suggested to occur following nectar robbing by carpenter bees (Xylocopa spp.).

Background
1. A complex of native and wild bees pollinate blueberries in North Carolina.
2. Blueberry pollinators vary in their abundance, per-visit efficiency, activity patterns, visitation rate, and interspecific interactions.
3. Rabbiteye blueberry cultivars may vary in flower morphology.
4. Differences in flower morphology may influence bee behavior and activity.

Methods
2009
Timed, 15 min. single plant observations were conducted on var. Premier (15 plants), Powderblue (9), and Brightwell (28) at three sites over the course of a total of 10 days (3-4 visits per site) during blueberry bloom.

2010
Timed, 15 min. observations of paired plants of var. Premier and Powderblue were conducted at a single location and repeated at four different times on different plants.

In both years, the number and species group (Apis mellifera, Bombus spp., Habropoda labariosa, X. virginica, or small natives) of all bees visiting the flowers was recorded by a single observer (2009) or two observers (2010).

Statistical analyses
Using a generalized linear mixed model (Proc Mixed, SAS v. 9.2), we compared the effects of variety on the abundance of either wild bees or A. mellifera visits to a plant. Count data were log1+ transformed to meet the assumptions of the model. Variation in this floral morphology appears to alter the species composition of the visiting bee community. The rabbiteye variety ‘Premier’ exhibits abnormal flower morphology, with shortened and split corollas, and appeared to be visited by a different community of bee pollinators than nearby, simultaneously flowering varieties. We conducted observations to compare bee visitation rates at ‘Premier’ flowers to other common rabbiteye varieties (‘Powderblue’ and ‘Brightwell’) that have more typical flowers. Timed observations were conducted during 2009 and 2010, and significantly more A. mellifera and significantly fewer wild bees visited ‘Premier’ flowers when compared to other rabbiteye cultivars. This apparent resource partitioning may reduce cross-pollination, which is important for successful rabbiteye blueberry production but may also increase A. mellifera visitation. A similar visitation rate increase by A. mellifera in blueberries has been suggested to occur following nectar robbing by carpenter bees (Xylocopa spp.).

1. Blueberry pollinators

2. Relative pollinator efficiency

<table>
<thead>
<tr>
<th>Optimal bee</th>
<th>Abundant?</th>
<th>Per visit efficient?</th>
<th>Activity limits?</th>
<th>Visitation rate?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apis mellifera</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Faster</td>
</tr>
<tr>
<td>Bombus spp.</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Slower</td>
</tr>
<tr>
<td>Habropoda labariosa</td>
<td>Sometimes</td>
<td>No</td>
<td>No</td>
<td>Faster</td>
</tr>
<tr>
<td>Xylocopa virginica</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Slower</td>
</tr>
<tr>
<td>Small native bees</td>
<td>Sometimes</td>
<td>No</td>
<td>No</td>
<td>Slower</td>
</tr>
<tr>
<td>Osmia cornifrons</td>
<td>No</td>
<td>Yes</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

3. Rabbiteye blueberry flower morphology

a. Powerblue flowers with typical corollas, and b. Premier flowers with shortened corollas.

4. Pollinator community between rabbiteye blueberry varieties

Premier received significantly more visits from A. mellifera than wild bees, and non-Premier varieties received more visits from wild bees (F_{1,113} = 64.8; P < 0.0001)

Results
- ‘Premier’ attracted a pollinator community distinct from other cultivars.
- This difference may be the result abnormal flower morphology found in ‘Premier’ rather than among-cultivar differences in nectar volume, concentration, or volatile profiles (Rodriguez-Saona et al. 2011).

Interpretation and relationship to previous work
A. mellifera were abundant at ‘Premier’ flowers due to the ease of access to their nectaries. Wild bees visit blueberry primarily for pollen, not nectar (Dogterom 1999), and may prefer flowers with a complete corolla, enabling more uniform handling. Alternately, wild bees may be avoiding interspecific competition with A. mellifera at ‘Premier’ flowers (Rogers et al. 2013). These activities may reduce cross-pollination in intercropped plantings: A. mellifera may skip over less-attractive ‘Brightwell’ or ‘Powderblue’ plants to preferentially forage at ‘Premier’, and wild bees may do the opposite, avoiding ‘Premier’. Despite the potential for reduced cross-pollination, Sampson and Cane (2000) found that A. mellifera were efficient pollinators of ‘Premier’.

The attraction of A. mellifera to abnormal blueberry flowers is also worth considering in relation to the phenomenon of ‘nectar-robbing’ (Inouye 1980). The carpenter bee, X. virginica frequently robs nectar from blueberry flowers by creating a perforation in the base of the corolla. In the presence of these perforations, A. mellifera readily switch to nectar-robbing (Cane and Payne 1993) as a more efficient way of extracting nectar from flowers (Dedej and Delaplane 2005). Abnormal ‘Premier’ flowers are effectively similar to Xylocopa-perforated blueberry flowers. Interpreted in this context, our findings suggest that nectar-robbing by Xylocopa may actually incase blueberry visitation and enhance pollination by A. mellifera, but nectar-robbing A. mellifera are equally efficient at pollinating blueberry flowers, as suggested by Sampson et al. (2004).

References


References


References


References


References


References

